In order to recover and effectively remove beryllium from beryllium-containing wastewater and relieve the environmental pressure caused by waste batteries. In this study, the gel material was synthesized based on the modified graphite material separated from the waste battery, and the graphite-@chitosan composite gel (CWBG@CH) was designed and synthesized. Interestingly, CWBG@CH has a maximum fitted adsorption capacity (Qemax) of 83.54 mg/g at pH = 6 and 35 °C. The adsorption process of CWBG@CH is controlled by surface complexation and electrostatic attraction. Strong coordination and synergistic adsorption between Be and the carbonic acid/hydroxyl group and phosphoric acid/amino group on CWBG@CH enhances the adsorption capacity and selectivity of CWBG@CH for Be. At the same time, the adsorption-desorption efficiency of the CWBG@CH in 5 times is >85 %. This discovery provides a direction for the recycling of graphite materials from waste batteries and indicates the great potential of CWBG@CH to remove Be(II) from aqueous solutions.
Read full abstract