The study aims to produce a detergent-compatible and alkaline thermophilic protease from a Bacillus strain and to investigate its usability as a detergent bio-additive. The protease-producing bacterium was identified as Bacillus pumilus strain TNP93 according to the 16S rRNA sequence. The bacterium optimally synthesized the protease at 40°C and pH 10 in 40h. The raw protease displayed its optimum activity at pH 10 and 60°C and its stability between pH 6-13 and 30-100°C for 24h. The molecular mass of the proteolytic band was estimated to be about 85kDa. The protease was not inhibited by any of the metal ions used (Ba2+, Ca2+, Co2+, Cu2+, Mg2+, Mn2+, Zn2+). 97 and 90% of its original activity with 5mM PMSF and EDTA remained. The activity was measured as 84, 124, and 95%, respectively, in the presence of 1% concentrations of Tween 20, Tween 80, and Triton X-100. In addition, all of its activity was preserved when the enzyme was exposed to 5% H2O2. The end products of casein were detected as tyrosine, aspartic acid, glycine, and cysteine by thin-layer chromatography. Considering the wash performance analysis, the mix of 1% commercial detergent and enzyme almost removed all of the protein-based stains (blood and egg yolk albumin). These remarkable findings indicate that the alkaline, thermo-, and oxidant-stable TNP93 protease is a valuable candidate for usage as a biological additive in various laundry detergents.
Read full abstract