Food waste anaerobic digestion requires proper utilization of solid digestate, and pyrolysis emerges as an effective method to produce nutrient-rich biochar. This study investigated the leaching characteristics and speciation changes of nutrients in food waste digestate (FWD)-derived biochar pyrolyzed at 350 °C (BC350), 450 °C (BC450), and 550 °C (BC550). BC350 featured inorganic nitrogen, while BC450 and BC550 contained elevated organic nitrogen. Nitrogen, potassium, and dissolved organic carbon were released via a quick surface wash-off process. Polyphosphates prevailed in BC350 and leached through a fast diffusion-controlled process. BC450 and BC550 were dominated by Ca/Mg orthophosphates and released via a slow dissolution-controlled process. Leachates from BC450 and BC550 stimulated the shoot length of wheat seeds. After 5 leaching cycles, there were more aromatic dissolved organics, and BC450 and BC550 exhibited higher abundance of C-N and O-P-O. Overall, pyrolysis of FWD at 450 °C and 550 °C shows potential in producing slow-release biochar fertilizers for resource recycling.