The homozygous Bronx waltzer (bv) mouse, which shows hearing impairment, also exhibits anxiety accompanied by a reduction in cortical parvalbumin (PV)-positive GABAergic interneurons. Recently, a mutation in splicing factor Ser/Arg repetitive matrix 4 (Srrm4) was found in bv mice. However, the cellular consequences of the Srrm4 mutation for anxiety remain unknown. Here, we tested our hypothesis that bv mutant primarily affects interneurons through a cell-intrinsic pathology that leads to a reduction of interneurons and consequently causes anxiety. We found that the anxiety becomes apparent at 6 weeks of age in bv/bv mice. However, in situ hybridization revealed that Srrm4 is not expressed in interneurons, but rather dominates in pyramidal neurons. In addition, the PV-positive GABAergic interneurons were not reduced in number in the bv/bv cortex when anxiety became evident. However, electrophysiological abnormality of GABAergic transmission from interneurons was concomitantly present. Pharmacological blockage of GABAA receptors revealed increased excitability in bv/bv mice, although no gross change occurred in the expression of an Srrm4-downstream gene, Kcc2, which regulates chloride flux upon GABAergic transmission. These findings suggest that the bv-associated Srrm4 mutation mainly involves post-synaptic GABAergic transmission in the central nervous system, which may be associated with the anxiety phenotype in bv/bv mice.