In this paper, we construct some families of rotated unimodular lattices and rotated direct sum of Barnes–Wall lattices [Formula: see text] for [Formula: see text] and [Formula: see text] via ideals of the ring of the integers [Formula: see text] for [Formula: see text] and [Formula: see text]. We also construct rotated [Formula: see text] and [Formula: see text]-lattices via [Formula: see text]-submodules of [Formula: see text]. Our focus is on totally real number fields since the associated lattices have full diversity and then may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. The minimum product distances of such constructions are also presented here.
Read full abstract