The solar vortex engine (SVE) has been investigated to generate power using renewable energy. The SVE was constructed from a vortex generation engine (VGE) and solar air collector (SAC). The SVE system primarily utilizes vertical air movement. However, the airflow entering the VGE experiences an obstruction. The purpose of this paper is to propose a new design for the VGE that creates a swirling updraft capable of overcoming air obstruction and reducing energy losses. A 3D numerical model of VGE was developed to visualize vortex generation. The modeling of the VGE is carried using SOLIDWORKS software and ANSYS-FLUENT 18. The improved VGE has six vertical twisted convergence blades connected to six guide vanes to direct updraft air in an anticlockwise swirl. All blades and vanes are housed in a VGE cylinder with a diameter of 20cm and a height of 30cm. The simulation results were validated by comparing with the results obtained from the present experimental model. The simulation results match with a mean difference of less than 5% with the experimental measurements. The results of the current CFD investigation indicate that there is a gradient in air temperature and pressure within the VGE, ranging from the highest values of 314 K and 3.85 Pa to the lowest values of 308 K and 2.42 Pa, respectively. The CFD visualization shows a threefold increase in axial velocity and a fivefold increase in tangential velocity within an artificial vortex. Therefore, it can be concluded that the new VGE construction is highly efficient in generating a vortex.
Read full abstract