The main psychedelic component of magic mushrooms is psilocybin, which shows promise as a treatment for depression and other mental disorders. Psychedelic effects are believed to emerge through stimulation of serotonin 2A receptors (5-HT2ARs) by psilocybin's active metabolite, psilocin. We here report for the first time the relationship between intensity of psychedelic effects, cerebral 5-HT2AR occupancy and plasma levels of psilocin in humans. Eight healthy volunteers underwent positron emission tomography (PET) scans with the 5-HT2AR agonist radioligand [11C]Cimbi-36: one at baseline and one or two additional scans on the same day after a single oral intake of psilocybin (3-30 mg). 5-HT2AR occupancy was calculated as the percent change in cerebral 5-HT2AR binding relative to baseline. Subjective psychedelic intensity and plasma psilocin levels were measured during the scans. Relations between subjective intensity, 5-HT2AR occupancy, and plasma psilocin levels were modeled using non-linear regression. Psilocybin intake resulted in dose-related 5-HT2AR occupancies up to 72%; plasma psilocin levels and 5-HT2AR occupancy conformed to a single-site binding model. Subjective intensity was correlated with both 5-HT2AR occupancy and psilocin levels as well as questionnaire scores. We report for the first time that intake of psilocybin leads to significant 5-HT2AR occupancy in the human brain, and that both psilocin plasma levels and 5-HT2AR occupancy are closely associated with subjective intensity ratings, strongly supporting that stimulation of 5-HT2AR is a key determinant for the psychedelic experience. Important for clinical studies, psilocin time-concentration curves varied but psilocin levels were closely associated with psychedelic experience.