The exploration and development of oil and gas resources in deep formations is a key strategic priority for national energy production. However, manual methods for handling gas kicks suffer from low operating accuracy and inefficiency during high-temperature and high-pressure deep well drilling. To address the need for real-time bottomhole pressure prediction and control, an efficient gas–liquid–solid computing model was developed based on the gas slip model and cuttings settling velocity model. By integrating this model with an automatic choke adjustment system, an automatic gas kick attenuation model for deep well drilling was established. Results show that, compared to the driller’s and wait-and-weight methods, the automatic gas kick attenuation method significantly reduces peak choke pressure due to its larger frictional pressure drop and higher cuttings hydrostatic pressure. The automatic attenuation method not only leads to an average reduction of 28.42% in maximum choke/casing pressure but also accelerates gas removal, achieving gas kick attenuation ten times faster than the driller’s method and seven times faster than the wait-and-weight method. The study also investigates the influence of gas solubility, well depth, gas influx volume, formation permeability, and drilling fluid volumetric flow rate on gas kick attenuation characteristics. The findings provide a solid foundation for improving the efficiency of gas kick management in deep well drilling operations.
Read full abstract