In this work, we present a mixed-mode phase field approach to model delamination progression and its migration. The proposed model includes the volumetric and deviatoric effects that occur during the mixed-mode delamination and migration. The volumetric–deviatoric split is combined with a power law criterion of delamination to capture the mixed-mode effects. An anisotropic tensor is used in the crack surface density function for capturing the anisotropic fracture. Two history parameters are introduced to ensure the irreversibility of the damage field throughout the evolution process of delamination and to consider the maximum value of the strain energy. A staggered approach is implemented for solving the equilibrium and evolution equations. The algorithm enables to obtain stable numerical solutions with faster convergence. Several examples of mode I and mode II as per standard tests have been incorporated to demonstrate the working of the proposed method. The numerical examples are validated by comparison with experimental results from the literature. It is observed that the proposed model can predict crack paths and angles closer to the experimental results. Examples of multiple delamination and delamination migration are also studied to understand the kinking in the delamination scenario. It is observed that the delamination migration is governed by the ratio of notch length a to the distance of the load from the edge L, and by the stress state in front of the crack tip. In the case of laminates with multiple interphases, the event of delamination impinging and kinking at interphase depends on the fracture toughness ratio of the bulk and the interphase. The example of the single-edge notched composite lamina and open-hole tension test with different fiber orientations has been validated with the literature and experiments.