Voltage-dependent anion channels (VDACs) are major transport proteins localized in the outer membrane of mitochondria and play critical roles in regulating plant growth and responding to stress. In this study, a total of 26 VDAC genes in common wheat (Triticum aestivum L.) were identified. TaVDACs that contained β-barrel structures were classified into three groups with phylogenetic and sequence alignment. Additionally, the gene structure and protein conserved motif composition varied among diverse subfamilies but were relatively conserved within the same subfamily. The basic elements that were stress- and hormone-related, including TATA-box, CAAT-box, MBS, LTR, TC-rich repeats, ABRE, P-box and TATC-box, were predicted within the promoter region of TaVDAC genes. TaVDAC expression patterns differed among tissues, organs and abiotic stress conditions. Overexpression (OE) of TaVDAC1-B conferred high tolerance to salinity and less resistance to drought stress in Arabidopsis thaliana. TaVDAC1-B interacted with Nucleoredoxin-D1 (TaNRX-D1) protein. Furthermore, compared with WT lines, salinity stress further upregulated the level of AtNRX1 (homologous gene of TaNRX-D1 in Arabidopsis) expression and the activity of superoxide dismutase in TaVDAC1-B OE lines, which led to a decrease in superoxide radical accumulation; drought stress further downregulated AtNRX1 expression and superoxide dismutase activity in TaVDAC1-B OE lines, resulting in the accumulation of superoxide radicals. Our study not only presents comprehensive information for understanding the VDAC gene family in wheat but also proposes a potential mechanism in response to drought and salinity stress.
Read full abstract