Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01ng/mL, and a wide linear range from 2 to 100ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.
Read full abstract