3-Hydroxypropionic acid (3-HP) is an industrially important platform chemical for super-absorbent or biodegradable polymers. Its production via biological methods is expected to be more competitive than chemical methods. Klebsiella pneumoniae is the most promising host due to its innate capabilities for 3-HP and vitamin-B12 production, ease of culture, and ease of engineering. In this study, step-by-step metabolic engineering and fermentation technologies were used to enhance the production of 3-HP. K. pneumoniae-derived ydcW gene was overexpressed using a plasmid after screening candidate genes. Major competing pathways encoded by dhaT, yqhD, ldhA, glpK, poxB, and pta-ackA were blocked. Additionally, it was demonstrated that simultaneous reinforcement of two native aldehyde dehydrogenase encoded by the ydcW gene preferring NADPH and the puuC gene preferring NADH, synergistically improved 3-HP production. Additional reinforcement of the acs gene to reduce acetate accumulation resulted in 93.7 g/L of 3-HP with a yield of 0.42 g/g·glycerol over a 72-h fed-batch fermentation. This performance is deemed sufficient for industrial applications.