Recently, we have described the first supermolecular nanoentities of vitamin B12 derivative, viz. monocyano form of heptabutyl cobyrinate, unique nanoparticles with strong noncovalent intermolecular interactions, emerging optical and catalytic properties. Their nearest analogue, heptamethyl cobyrinate (ACCby), exhibits bioactivity. Here, we demonstrate the first example of the formation of nanoparticles of this nucleotide-free analogue of vitamin B12 in protein nanocarriers and neuroprotective activity in vivo of the own nanoform of the drug. The preparation and characterization of nanocarriers based on bovine serum albumin (BSA) loaded with vitamin B12 (viz. cyano- and aquacobalamins) and ACCby were performed. Nucleotide-free analogue of vitamin B12 is tightly retained by the protein structure and exists in an incorporated state in the form of nanoparticles. The effect of encapsulated drugs on the character and severity of primary generalized seizures in rats induced by the pharmacotoxicant thiosemicarbazide was studied. Cyanocobalamin and ACCby exhibited a neuroprotective effect. The best influence of the encapsulation on the effectiveness of the drugs was achieved in the case of AСCby, whose bioavailability as a neuroprotector did not change upon introduction in BSA particles, i.e., 33 % of surviving animals were observed upon ACCby administration in free form and in encapsulated state. No surviving rats were observed without the administration of drugs. Thus, BSA nanocarriers loaded by nanoparticles of nucleotide-free analogues of vitamin B12, including hydrophobic ones, can be recommended for neuroprotection and targeted delivery.
Read full abstract