This study was conducted to evaluate the effects of static magnetic field (SMF) and nanoparticles (NPs) on the vitrification of cumulus-oocyte-complex (COC). To this end, the non-vitrified (nVit) and vitrified groups (Vit) that contain NPs, with or without SMF were labeled nVit_NPs, nVit_NPs_SMF, Vit_NPs, and Vit_NPs_SMF, respectively. The non-toxic dosages of NPs were first determined to be 0.008% w/v. The survival, apoptosis, and necrosis, mitochondrial activity, fertilization rate, subsequent-derived embryo development, and gene expressions were examined. The viability rates obtained by trypan blue and Anx-PI staining were meaningfully smaller in the Vit groups, compared to the nVit groups. The JC1 red/green signal ratios were reduced considerably in the Vit group, compared to the nVit. Transmission electron microscopy (TEM) was performed to assess the entry of the NPs into the oocytes. TEM images showed that NPs were present in nVit_NPs, and Vit_NPs. Thereafter, the effects of NPs and SMF on in vitro fertilization (IVF) were examined. The difference in blastocyst rates between nVit and Vit_NPs_SMF groups was significant. Finally, Nanog, Cdx2, Oct4, and Sox2 genes were evaluated. There were substantial differences in Cdx2 gene expressions between the Vit_NPs and nVit groups. The expression of Nanog in Vit was significantly higher than those of the Vit_NPs, Vit_NPs_SMF, and nVit groups. The data presented here provide deeper insight into the application of iron oxide nanoparticles in COC vitrification. It appears that using SMF and supplemented CPA by NPs inhibits cryoinjury and promote the embryo development capacity of vitrified-warmed COCs.