Iris Biometric authentication is considered to be one of the most dependable biometric characteristics for identifying persons. In actuality, iris patterns have invariant, stable, and distinguishing properties for personal identification. Due to its excellent dependability in personal identification, iris recognition has received more attention. Current iris recognition methods give good results especially when NIR and specific capture conditions are used in collaboration with the user. On the other hand, values related to images captured using VW are affected by noise such as blurry images, eye skin, occlusion, and reflection, which negatively affects the overall performance of the recognition systems. In both NIR and visible spectrum iris images, this article presents an effective iris feature extraction strategy based on the scale-invariant feature transform algorithm (SIFT). The proposed method was tested on different databases such as CASIA v1 and ITTD v1, as NIR images, as well as UBIRIS v1 as visible-light color images. The proposed system gave good accuracy rates compared to existing systems, as it gave an accuracy rate of (96.2%) when using CASIA v1 and (96.4%) in ITTD v1, while the system accuracy dropped to (84.0 %) when using UBIRIS v1.