Techniques combining optical tweezers with fluorescence microscopy have become increasingly popular. Unfortunately, the high-power, infrared lasers used to create optical traps can have a deleterious effect on dye stability. Previous studies have shown that dye photobleaching is enhanced by absorption of visible fluorescence excitation plus infrared trap photons, a process that can be significantly reduced by minimizing simultaneous exposure to both light sources. Here, we report another photobleaching pathway that results from direct excitation by the trapping laser alone. Our results show that this trap-induced fluorescence loss is a two-photon absorption process, as demonstrated by a quadratic dependence on the intensity of the trapping laser. We further show that, under conditions typical of many trap-based experiments, fluorescence emission of certain fluorophores near the trap focus can drop by 90% within 1 min. We investigate how photostability is affected by the choice of dye molecule, excitation and emission wavelength, and labeled molecule. Finally, we discuss the different photobleaching pathways in combined trap-fluorescence measurements, which guide the selection of optimal dyes and conditions for more robust experimental protocols.
Read full abstract