PurposeThe purpose of this paper is to investigate propagation characteristics of seismic waves at the welded interface of an elastic solid and unsaturated poro-thermoelastic solid.Design/methodology/approachA theoretical formulation of partially saturated poro-thermoelastic solid is used in this study established by Zhou et al. (2019). The incidence of two primary waves (P and SV) is taken. The incident wave from the elastic solid induces two reflected waves and five refracted waves. Due to viscous pore fluids, partially saturated poro-thermoelastic solid behave dissipative, whereas elastic solid behaves non-dissipative. As a result, both reflected and incident waves are homogeneous. However, all the refracted waves are inhomogeneous. A non-singular system of linear equations is formed by the coefficients of reflection and refraction for a specified incident wave. The energy shares of various reflected and refracted waves are determined by using these reflection and refraction factors. Finally, a sensitivity analysis is performed, and the effect of critical variables on energy partitioning at the interface is observed. The numerical example shows that throughout the process of reflection/refraction, the energy of incidence is conserved at all angles of incidences.FindingsThis study demonstrated two refracted (homogeneous) and five refracted (inhomogeneous) waves due to the incident wave from elastic solid. The reflection and refraction coefficients and partitioning of incident energy are acquired as a part of diverse physical parameters of the partially saturated poro-thermoelastic media. The interference energies between unlike pairs of refracted waves have been discovered due to the dissipative behavior of unsaturated poro-thermoelastic solid.Originality/valueThe sensitivity of different energy shares to various aspects of the considered model is graphically analyzed for a specific numerical model. The energy balance is maintained by combining interaction energy and bulk wave energy shares.
Read full abstract