High-resolution two-dimensional electrophoresis followed by computer analysis has been used to study quantitatively the patterns of protein synthesis produced in porcine alveolar macrophages and in Vero cells infected with African swine fever virus (ASFV). Initially, a protein database for each cell type was constructed. The porcine alveolar macrophage database includes 995 polypeptides (818 acidic, isoelectric focusing (IEF) and 177 basic, nonequilibrium pH gradient electrophoresis (NEPHGE)) whereas the Vero database contains 1,398 polypeptides (1,127 acidic, IEF and 271 basic, NEPHGE). Taking these databases as reference, ASFV highly virulent strain E70 induces 57 acid and 43 basic polypeptides in porcine alveolar macrophages, which account for most of the information content of the virus DNA. The kinetics of synthesis of the virus-induced polypeptides showed the existence of three classes of proteins: one whose synthesis starts early after infection, continues for a period and then switches off; another whose synthesis also starts early but continues for prolonged periods; and a third which requires DNA replication. The attenuated, cell adapted, strain BA71V induces 92 acidic and 37 basic proteins in Vero cells. Significant differences were observed when comparing the patterns of polypeptides induced by the two viral strains. In both cell systems studied, ASFV infection produces a general shutoff of protein synthesis that affects up to 65% of the cellular proteins. Interestingly, 28 proteins of porcine alveolar macrophages and 48 proteins of Vero cells are stimulated at least two times by ASFV infection.
Read full abstract