Abstract The pathogen Colletotrichum gloeosporioides causes anthracnose, a serious threat to tea trees around the world, particularly in warm and humid regions. RNA-Seq data have previously indicated NAC transcription factors are involved in anthracnose resistance, but underlying mechanisms remain unclear. The BiFC, Split-LUC, and Co-IP assays validated the interaction between CsbHLH62 and CsNAC17 identified through yeast two-hybrid (Y2H) screening. CsNAC17 or CsbHLH62 overexpression enhanced anthracnose resistance, as well as enhanced levels of H2O2, hypersensitivity, and cell death in Nicotiana benthamiana. The NBS-LRR gene CsRPM1 is regulated by CsNAC17 by binding directly to its promoter (i.e., CACG, CATGTG), while CsbHLH62 facilitates CsNAC17’s binding and increases trascriptional activity of CsRPM1. Additionally, transient silencing of CsNAC17 and CsbHLH62 in tea plant leaves using the virus-induced gene silencing (VIGS) system resulted in decreased resistance to anthracnose. Conversely, transient overexpression of CsNAC17 and CsbHLH62 in tea leaves significantly enhanced the resistance against anthracnose. Based on these results, it appears that CsbHLH62 facilitates the activity of CsNAC17 on CsRPM1, contributing to increased anthracnose resistance.