Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus, where they incorporate the viral genome. They then transit through the two nuclear membranes and are wrapped by a host-derived envelope. In the process, several HSV-1 proteins are targeted to the nuclear membranes, but their roles in viral nuclear egress are unclear. Among them, glycoprotein M (gM), a known modulator of virus-induced membrane fusion, is distributed on both the inner and outer nuclear membranes at the early stages of the infection, when no other viral glycoproteins are yet present there. Later on, it is found on perinuclear virions and ultimately redirected to the trans-Golgi network (TGN), where it cycles with the cell surface. In contrast, transfected gM is found only at the TGN and cell surface, hinting at an interaction with other viral proteins. Interestingly, many herpesvirus gM analogs interact with their gN counterparts, which typically alters their intracellular localization. To better understand how HSV-1 gM localization is regulated, we evaluated its ability to bind gN and discovered it does so in both transfected and infected cells, an interaction strongly weakened by the deletion of the gM amino terminus. Functionally, while gN had no impact on gM localization, gM redirected gN from the endoplasmic reticulum (ER) to the TGN. Most interestingly, gN overexpression stimulated the formation of syncytia in the context of an infection by a nonsyncytial strain, indicating that gM and gN not only physically but also functionally interact and that gN modulates gM's activity on membrane fusion. HSV-1 gM is an important modulator of virally induced cell-cell fusion and viral entry, a process that is likely finely modulated in time and space. Until now, little was known of the proteins that regulate gM's activity. In parallel, gM is found in various intracellular locations at different moments, ranging from nuclear membranes, perinuclear virions, the TGN, cell surface, and mature extracellular virions. In transfected cells, however, it is found only on the TGN and cell surface, hinting that its localization is modulated by other viral proteins. The present study identifies HSV-1 gN as a binding partner for gM, in agreement with their analogs in other herpesviruses, but most excitingly shows that gN modulates gM's impact on HSV-1-induced membrane fusion. These findings open up new research avenues on the viral fusion machinery.
Read full abstract