In smart ranch management, cattle behavior recognition and tracking play a crucial role in evaluating animal welfare. To address the issues of missed and false detections caused by inter-cow occlusions and infrastructure obstructions in the barn environment, this paper proposes a multi-object tracking method called YOLO-BoT. Built upon YOLOv8, the method first integrates dynamic convolution (DyConv) to enable adaptive weight adjustments, enhancing detection accuracy in complex environments. The C2f-iRMB structure is then employed to improve feature extraction efficiency, ensuring the capture of essential features even under occlusions or lighting variations. Additionally, the Adown downsampling module is incorporated to strengthen multi-scale information fusion, and a dynamic head (DyHead) is used to improve the robustness of detection boxes, ensuring precise identification of rapidly changing target positions. To further enhance tracking performance, DIoU distance calculation, confidence-based bounding box reclassification, and a virtual trajectory update mechanism are introduced, ensuring accurate matching under occlusion and minimizing identity switches. Experimental results demonstrate that YOLO-BoT achieves a mean average precision (mAP) of 91.7% in cattle detection, with precision and recall increased by 4.4% and 1%, respectively. Moreover, the proposed method improves higher order tracking accuracy (HOTA), multi-object tracking accuracy (MOTA), multi-object tracking precision (MOTP), and IDF1 by 4.4%, 7%, 1.7%, and 4.3%, respectively, while reducing the identity switch rate (IDS) by 30.9%. The tracker operates in real-time at an average speed of 31.2 fps, significantly enhancing multi-object tracking performance in complex scenarios and providing strong support for long-term behavior analysis and contactless automated monitoring.
Read full abstract