Optimization studies for the energy management systems of hybrid electric powertrains have critical importance as an effective measure for vehicle manufacturers to reduce greenhouse gas emissions and fuel consumption due to increasingly stringent emission regulations in the automotive industry, strict fuel economy legislation, continuously rising oil prices, and increasing consumer awareness of global warming and environmental pollution. In this study, firstly, the mathematical model of the powertrain and the rule-based energy management system of the vehicle with a power-split hybrid electric vehicle configuration are developed in the Matlab/Simulink environment and verified with real test data from the vehicle dynamometer for the UDDS drive cycle. In this way, a realistic virtual test platform has been developed where the simulation results of the energy management systems based on discrete dynamic programming and Pontryagin’s minimum principle optimization can be used to train the artificial neural network-based energy management algorithms for hybrid electric vehicles. The average fuel consumption in relation to the break specific fuel consumption of the internal combustion engine and the total electrical energy consumption of the battery in relation to the operating efficiency of the electrical machines, obtained by comparing the simulation results at the initial battery charging conditions of the vehicle using different driving cycles, will be analyzed and the advantages of the different energy management techniques used will be evaluated.
Read full abstract