This paper presents the first step of a research programme implemented by IFSTTAR in order to develop an integrative simulation platform able to support a Human Centred Design (HCD) method for virtual design of driving assistances. This virtual platform, named COSMO-SiVIC, implements a COgnitive Simulation MOdel of the DRIVEr (i.e. COSMODRIVE) into a Vehicle–Environment–Sensors platform (named SiVIC, for Simulateur Véhicule-Infrastructure-Capteur). From this simulation tool based on a computational driver model, the design costs of driving assistances is expected to reduce in the future, and the end-users needs during the design process are also better taken into account. This article is mainly focussed on the description of the driver model developed and implemented on the SiVIC virtual platform, which is only the first step towards a future Virtual HCD integrated tool. The first section will discuss the research context and objective, and the second one will present the theoretical background in cognitive sciences supporting our driver modelling approach. Then, the SiVIC tool is used in this research as a methodological and technical support for both empirical data collection among human drivers and as a virtual road environment to be interfaced with the COSMODRIVE model. In the result section, the functional architecture of COSMO-SIVIC (based on three complementary modules of Perception, Decision and Action) will be described, and an example of virtual simulation of human driver's errors due to visual distraction while driving will be presented. The perspectives concerning future use of COSMO-SIVIC for virtual HCD will be then discussed in the conclusion section.
Read full abstract