AbstractDue to the absence of inertia, the high proportion of electronic power equipment is a great threat to the stability of the power system. Previous studies have proposed the virtual synchronous machine (VSM) control method for the inverter‐based distributed generators (DG). However, due to the capacity limitations of DG, the capability of the inverter to provide the inertia action is limited. At the same time, some controllable loads also have the ability to provide inertial support but are still not fully utilised. To get a better grid frequency response, this paper proposes a source‐load coordination strategy based on the VSM and virtual asynchronous machine (VAM) concept. For that purpose, a detailed VAM model is firstly derived for the rectifier on power demand side. Not only the virtual inertia and frequency oscillation damping can be provided, but also the synchronisation units are not needed to obtain the unknown grid frequency. After that, a distributed consensus‐based secondary control is present to regulate the frequency to converge to a reference value based on VSM and VAM. Compared with the existing frequency regulation method, the proposed scheme makes full use of the ability of the load side to participate in frequency modulation. Finally, some numerical simulations are performed to validate the feasibility of the proposed method on MATLAB/Simulink.
Read full abstract