With the continuous advancement of cloud computing and satellite communication technology, the cloud-network-integrated satellite network has emerged as a novel network architecture. This architecture harnesses the benefits of cloud computing and satellite communication to achieve global coverage, high reliability, and flexible information services. However, as business types and user demands grow, addressing differentiated Quality of Service (QoS) requirements has become a crucial challenge for cloud-network-integrated satellite networks. Effective resource allocation algorithms are essential to meet these differentiated QoS requirements. Currently, research on resource allocation algorithms for differentiated QoS requirements in cloud-network-integrated satellite networks is still in its early stages. While some research results have been achieved, there persist issues such as high algorithm complexity, limited practicality, and a lack of effective evaluation and adjustment mechanisms. The first part of this study examines the state of research on network virtual mapping methods that are currently in use. A reinforcement-learning-based virtual network mapping approach that considers quality of service is then suggested. This algorithm aims to improve user QoS and request acceptance ratio by introducing QoS satisfaction parameters. With the same computational complexity, QoS is significantly improved. Additionally, there has been a noticeable improvement in the request acceptance ratio and resource utilization efficiency. The proposed algorithm solves existing challenges and takes a step towards more practical and efficient resource allocation in cloud-network-integrated satellite networks. Experiments have proven the practicality of the proposed virtual network embedding algorithm of Satellite Network (SN-VNE) based on Reinforcement Learning (RL) in meeting QoS and improving utilization of limited heterogeneous resources. We contrast the performance of the SN-VNE algorithm with DDRL-VNE, CDRL, and DSCD-VNE. Our algorithm improve the acceptance ratio of VNEs, long-term average revenue and delay by an average of 7.9%, 15.87%, and 63.21%, respectively.
Read full abstract