Ever since the introduction of damage tolerance requirements in the aviation regulations, efforts continue to be made to prevent catastrophic failures due to damages present in the structure. It has also been realized that damage detection is the weakest link in the whole process of damage tolerance design to maintain continued airworthiness. The major components of the aircraft structure consist of both integral and riveted panels of sheets and stringers which are employed in fuselage skin panels, spar webs and stiffeners. In spite of all precautions, cracks or damages may arise in many of these primary structural members. These cracks cause stiffness degradation and reduce the total load-carrying capacity of the structure. In this paper, the damage tolerance behaviour of fuselage crown panel both integral and riveted stiffened panel configurations of Aluminium alloy 2024-T351 are studied using finite element based tools using crack growth analysis methods. The crack growth behaviour of both integral and riveted stiffened panels of aircraft fuselage having same geometrical configuration and subjected to uniformly distributed tensile loads is investigated. For this, a metallic stiffened panel with eight stringers, representative of crown panel of a transport aircraft fuselage is analysed with a centre skin crack propagating through the stringers. Stress intensity factors and fatigue crack propagation rates at the progressive crack tip of both types of the stiffened panels are computed by using Modified Virtual Crack Closure Integral (MVCCI) method. The stiffened panels fatigue crack growth rate was computed by using Paris law under constant amplitude fatigue loads. The analysis results show that integral stiffened panel causes higher stress intensity factor and less load bearing capability than riveted stiffened panel which has better damage tolerant capability in comparison to the integrally stiffened panel.
Read full abstract