Barrier islands are landscape features that protect coastlines by reducing wave energy and erosion. Quantifying vegetation-topographic interactions between adjacent habitats are essential for predicting long-term island response and resilience to sea-level rise and disturbance. To understand the effects of dune dynamics on adjacent interior island ecosystem processes, we quantified how sediment availability and previous disturbance regime interact with vegetation to influence dune building and ease of seawater and sediment movement into the island interior on two US mid-Atlantic coast barrier islands. We conducted field surveys of sediment accretion, vegetative cover, and soil characteristics in dune and swale habitats. Digital elevation models provided assessment of water flow resistance from the mean high water mark into the island interior. We found that geographic location impacted sediment accretion rates and Panicum amarum (a species increasing in abundance over time in the Virginia barrier islands) accreted sediment at a significantly lower rate compared to other dune grasses. Dune elevation impacted the ease of seawater flow into the island interior, altering soil chlorides, annual net primary productivity, and soil carbon and nitrogen. Our work demonstrates the importance of incorporating biological processes and cross-island connectivity into future scenario modeling and predictions of rising sea-levels and increased disturbance.
Read full abstract