ABSTRACT Recently, huge concerns have been raised in diagnosing chest diseases, especially after the COVID-19 pandemic. Regular diagnosis processes of chest diseases sometimes fail to distinguish between Corona and Viral Pneumonia diseases through Polymerase Chain Reaction (PCR) tests which are a time-engrossing process that needs convoluted manual procedures. Artificial Intelligence (AI) techniques have achieved high performance in aiding medical diagnostic processes. The innovation of this work lies in using a new diagnostic technique to distinguish between COVID-19 and Viral Pneumonia diseases using advanced AI technologies. This is done by extracting novel features from chest X-ray images based on Wavelet analysis, Scale Invariant Feature Transformation (SIFT), and the Mel Frequency Cepstral Coefficient (MFCC). Support vector machines (SVM) and artificial neural networks (ANN) were utilized to build classification algorithms using 1200 chest X-ray mages for each case. Using Wavelet features, the results of evaluating the SVM and ANN models were 97% accurate, and with SIFT features, they were closer to 99%. The proposed models were very effective at identifying COVID-19 and Viral Pneumonitis, so physicians can determine the best treatment course for patients with the support of this high accuracy. Moreover, this model can be used in hospitals and emergency rooms when a massive number of patients are waiting, as it is faster and more accurate than the regular diagnosis processes as each step takes few seconds on average to complete.