Electron-transfer ionization in matrix-assisted laser desorption/ionization (ET-MALDI) is widely used for the analysis of functional materials that are labile, unstable, and reactive in nature. However, conventional ET matrices (e.g., trans-2-[3-(4- tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB)) still lack in performance due to cluster formation, reactivity with analytes, and vacuum instability. In this contribution, we report the use of α-cyanophenylenevinylene derivatives as UV MALDI matrices for the analysis, by ET ionization, of nanoparticles, polymers, porphyrins, and fullerenes. The synthetic versatility of the phenylenevinylene (PV) core allowed us to modulate physicochemical properties, fundamental for efficient formation of primary ions in the gas phase under MALDI conditions, such as planarity, ionization potentials, molar absorptivity, and laser thresholds. For instance, introduction of -CN groups in vinyl positions of the PV core induced structural disruption in planarity in the new α-CNPV derivatives, shifting their maximum molar absorptivity to UV wavelengths and increasing their ionization energy values above 8.0 eV. UV MALDI-relevant photophysical properties in solution and solid state are reported (λmax and ε355nm). LDI spectra of α-CNPVs exhibit predominant signals due to M+• and [M + H]+ species, whereas the standard matrix DCTB shows peaks associated with clusters and nondesirable products. The mass spectrometry (MS) performance of six α-CNPV derivatives was assessed for the ionization of a standard compound, with α-CNPV-CH3 and α-CNPV-OCH3 exhibiting better analytical figures of merit than those of a standard matrix (DCTB). These new matrices display high vacuum stability (79%) for up to 240 min of residence in the ionization source, in contrast with DCTB with 13%. Vacuum stability is vital, particularly for applications such as high-throughput analysis and imaging MS. In addition, when a mixture of 20 analytes (PAHs, porphyrins, and triphenylamine dyes) ranging from m/z 300 to 1700 was analyzed via ET-MALDI, we observed analyte coverage of 90% with the α-CNPV-CH3 derivative, whereas DCTB afforded only 70%. Finally, α-CNPV-CH3 was tested and compared with DCTB, as ET-MALDI matrix for petroporphyrins, conjugated polymers, gold nanoparticles, and fullerene derivatives analysis, outperforming in most cases the standard matrix.