The correct allowance for the influence of anharmonicity in the vibrational spectrum of CO2 on the level distribution of molecules under nonequilibrium conditions, when the vibrational temperature departs significantly from the gas temperature, has become especially urgent in connection with obtaining generation on a number of long-wavelength transitions of CO2 molecules [1, 2]. The shifts in the levels of coupled modes (symmetric and deformation) are due mainly to Fermi resonance and can reach a considerable value, comparable with the gas temperature even for low levels. In [3] the main features of the quasisteady level distribution of coupled modes were clarified within the framework of the Treanor model of vibrational kinetics. The influence of the ascending flux of quanta, excited by VV exchange under nonequilibrium conditions, on the vibrational distribution was considered in [4–6]. In the present paper we propose a quasiequilibrium model of CO2 kinetics, obtained without presuming quasisteadiness of the ascending flux of quanta, and making it possible, in contrast to [3–6] to describe the dynamics of the variation of the distribution of molecules among multiplets as a result of processes of VV exchange and VT relaxation between multiplets, with allowance for possible processes of pumping by outside sources. With a Boltzmann population distribution within the multiplets, having the translational temperature of the gas, the problem of studying relaxation in coupled modes is reduced to the equations for an effective anharmonic oscillator with levels corresponding to the multiplets of CO2 molecules. In this case the levels of the effective oscillator are degenerate with a multiplicity equal to the number of levels in the corresponding multiplet, and they have an anharmonicity constant dependent on the gas temperature. The population distribution of the effective oscillator can be studied by methods developed for the investigation cf a one-mode anharmonic oscillator. The proposed quasiequilibrium model was used for a numerical calculations of the temporal evolution of the distribution function of CO2 molecules over the levels of coupled modes under the conditions of an extremely maintained discharge.
Read full abstract