Abstract This study investigated the effects of max-phase Ti₃SiC₂ and other nanoparticle reinforcements (graphene, CNTs, and SiN) on the mechanical and dynamic properties of friction stir processed (FSPed) AA5083 aluminum composites. Microstructural analysis revealed the impact of these reinforcements on grain size. Dynamic properties were assessed using a free vibration impact test, while mechanical properties were measured through a compression test. Most composites showed enhancements in damping ratio and natural frequency compared to the base alloy, with the Ti₃SiC₂ leading to a substantial increase in natural frequency. The AA5083/max phase Ti3SiC2 composite demonstrated the most significant improvements across nearly all properties, notably enhancing stiffness (+7.35% in E), strength (+25.36% in yield strength), and vibration resistance (+5.83% in fₙ), while significantly reducing damping (−62.76% in ζ). In contrast, the friction stirred AA5083 offered moderate enhancements in strength (+17.86% in yield strength) and a slight increase in natural frequency (+2.00%) but did not significantly improve stiffness and actually increased damping. The base alloy AA5083 served as the baseline for comparison, exhibiting the lowest performance in all categories. The findings highlight the potential of FSP and reinforcement, especially Ti3SiC2, for tailoring the properties of AA5083 for enhanced performance in various applications. These findings emphasize the significance of customizing the reinforcement material to attain the intended mechanical characteristics in AA5083 composites.
Read full abstract