This study introduces a novel piezoelectric stack energy harvester with a double-arched frame structure. This design effectively cushions impacts from track vibrations, thereby protecting the fragile piezoelectric stack made of brittle materials. The energy harvesting characteristics of the device are studied in detail through experiments and theoretical simulations. The harvester's output voltage depends on the external resistance and increases with higher resistance. The optimal resistance for the single X-direction piezoelectric stack is 340kΩ, which can output 0.519mW of power under a 3Hz frequency and an 8kN sinusoidal load. The Y-direction piezoelectric stack outputs 0.012mW, resulting in a total output of 1.050mW for the entire harvester. The output power of the harvester is positively correlated with the load vibration frequency, increasing rapidly for frequencies below 9Hz. The impact of load magnitude on the harvester's output shows a generally linear increase. In impact experiments, the single X-direction piezoelectric stack successfully lit 54 LEDs under a 5J energy impact, demonstrating the harvester's high power density and potential for practical applications.