The operational state of a rotor system directly affects its working efficiency, and the axis trajectory can accurately characterize this state. Therefore, a method for extracting axis motion trajectory characteristics based on distance sequence representation is established. First, the axis trajectory sample signal is constructed from the original vibration displacement signal. Singular value decomposition (SVD) is performed on the sample signal to obtain effective components, resulting in a purified and denoised axis motion trajectory signal. Next, the axis motion trajectory signal is centralized and normalized. Feature extraction is then performed on the axis motion trajectory signal. Based on the different curvatures of various regions in the axis motion trajectory graph, data points are adaptively selected. The distances between the selected data points and a unique fixed point are calculated in the two-dimensional plane, resulting in a feature signal that characterizes the axis motion trajectory graph. This completes the extraction of the axis motion trajectory characteristics. Different rotational speeds, additional weights, and changes in rotor arrangement types are applied to a multi-disk rotor test rig to obtain measured data for various unbalanced states, validating this method. The results show that this method effectively characterizes the axis motion trajectory with strong generality.
Read full abstract