In this paper, numerical simulations of a new enhanced very early time electromagnetic (VETEM) prototype system are presented, where a horizontal transmitting loop and two horizontal receiving loops are used to detect buried targets, in which three loops share the same axis and the transmitter is located at the center of receivers. In the new VETEM system, the difference of signals from two receivers is taken to eliminate strong direct-signals from the transmitter and background clutter and furthermore to obtain a better SNR for buried targets. Because strong coupling exists between the transmitter and receivers, accurate analysis of the three-loop antenna system is required, for which a loop-tree basis function method has been utilized to overcome the low-frequency breakdown problem. In the analysis of scattering problem from buried targets, a conjugate gradient (CG) method with fast Fourier transform (FFT) is applied to solve the electric field integral equation. However, the convergence of such CG-FFT algorithm is extremely slow at very low frequencies. In order to increase the convergence rate, a frequency-hopping approach has been used. Finally, the primary, coupling, reflected, and scattered magnetic fields are evaluated at receiving loops to calculate the output electric current. Numerous simulation results are given to interpret the new VETEM system. Comparing with other single-transmitter-receiver systems, the new VETEM has better SNR and ability to reduce the clutter.