For the problem of relatively severe lateral vibration found in the vertical electrodynamic shaker experiment, an electromechanical coupling dynamic model of the electrodynamic shaker considering low-frequency lateral vibration is proposed. The reason and mechanism of the lateral vibration is explained and analyzed through this model. To establish this model, an electromagnetic force model of overall conditions is firstly built by fitting force samples with neural network method. The force samples are obtained by orthogonal test of finite element simulation, in which five factors of the moving coil including current, vertical position, flipping eccentricity angle, radial translational eccentric direction and distance are considered. Secondly, a 7-dof dynamic model of the electrodynamic shaker is developed with the consideration of the lateral vibration of the moving system. To obtain the transfer function accurately, the stiffness and damping parameters are identified. Finally, an electromechanical dynamic model is established by coupling the force model and the 7-dof dynamic model, and it is verified by experiments. The coupling model proposed can be further used for the control and optimization of the electrodynamic shaker.
Read full abstract