De-mining operations are of critical importance for humanitarian efforts and safety in conflict-affected regions. In this paper, we address the challenge of enhancing the accuracy and efficiency of mine detection systems. We present an innovative Deep Learning architecture tailored for pulse induction-based Metallic Mine Detectors (MMD), so called DL-MMD. Our methodology leverages deep neural networks to distinguish amongst nine distinct materials with an exceptional validation accuracy of 93.5%. This high level of precision enables us not only to differentiate between anti-personnel mines, without metal plates but also to detect minuscule 0.2-g vertical paper pins in both mineralized soil and non-mineralized environments. Moreover, through comparative analysis, we demonstrate a substantial 3% and 7% improvement (approx.) in accuracy performance compared to the traditional K-Nearest Neighbors and Support Vector Machine classifiers, respectively. The fusion of deep neural networks with the pulse induction-based MMD not only presents a cost-effective solution but also significantly expedites decision-making processes in de-mining operations, ultimately contributing to improved safety and effectiveness in these critical endeavors.
Read full abstract