Although the modified Blalock-Taussig shunt remains the mainstay method of palliation for augmenting pulmonary blood flow in various congenital heart diseases, the shunt must be carefully designed to achieve the best outcomes. This study investigated the effect of shunt configuration on pulmonary artery growth and growth discrepancy. Twenty patients with successful modified Blalock-Taussig shunt takedown were analyzed. Pulmonary artery and shunt characteristics were obtained using computed tomography scans. Differences in the baseline and follow-up diameter ratios and growth in the ipsilateral and contralateral arteries were calculated. The angle between the shunt and pulmonary artery, as well as the distance from the main pulmonary artery bifurcation, were measured. Correlations between pulmonary arteries and shunt configurations were analyzed. The median interval time between shunt placement and takedown was 154.5 days (interquartile range, 113.25-276.25 days). Follow-up values of the ipsilateral-to-contralateral pulmonary artery diameter ratio showed no significant correlation with the shunt angle (ρ=0.429, p=0.126) or distance (ρ=0.110, p=0.645). The shunt angle and distance from the main pulmonary bifurcation showed no significant correlation (ρ=-0.373, p=0.189). Pulmonary artery growth was negatively correlated with shunt angle (ipsilateral, ρ=-0.565 and p=0.035; contralateral, ρ=-0.578 and p=0.030), but not with distance (ipsilateral, ρ=-0.065 and p=0.786; contralateral, ρ=-0.130 and p=0.586). Shunt configuration had no significant effect on growth imbalance. The angle and distance of the shunt showed no significant correlation with each other. A more vertical shunt was associated with significant pulmonary artery growth. We suggest a more vertical graft design for improved pulmonary artery growth.