A conjugated convection-conduction analysis has been made for a vertical plate fin which exchanges heat with its micropolar fluid environment by mixed forced and free convection. The analysis is based on a one-dimensional model for the plate fin whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum, angular momentum, and energy in the micropolar fluid boundary layer adjacent to the fin. The local heat transfer coefficient is not specified in advance but is one of the results of the numerical solutions. Numerical results of the overall heat transfer rate, the local heat transfer coefficient, the local heat flux, and the fin temperature distribution for Pr = 5 are presented for various values of Δ (dimensionless material parameter), Nc (conjugated convection-conduction parameter), and Ω (buoyancy parameter).