Detecting sub-surface objects poses significant challenges, partly due to attenuation of the ground medium and cluttered environments. The acquisition polarisation and antenna orientation can also yield significant variation of detection performance. These challenges can be mitigated by developing more versatile systems and algorithms to enhance detection and identification. In this study, a novel application of a 3D SAR inverse algorithm and polarisation synthesis was applied to ultra-wideband polarimetric data of buried objects. The principle of polarisation synthesis facilitates an adaptable technique which can be used to match the target’s polarisation characteristics, and the application of this revealed hidden structures, enhanced detection, and increased received power when compared to single polarisation results. This study emphasises the significance of polarimetry in ground-penetrating radar (GPR), particularly for target discrimination in high-lift-off applications. The findings offer valuable insights that could drive future research and enhance the performance of these sensing systems.
Read full abstract