AbstractNeVer2 is an open-source, cross-platform tool aimed at designing, training, and verifying neural networks. It seamlessly integrates popular learning libraries with our verification backend, offering their functionalities via a graphical interface. Users can design the structure of a neural network by intuitively arranging blocks on a canvas. Subsequently, network training involves specifying dataset sources and hyperparameters through dialog boxes. After training, the verification process entails two steps: (i) incorporating input preconditions and output postconditions via dedicated blocks, and (ii) initiating verification with a simple “push-button” action. To our knowledge, there is currently no other publicly available tool that encompasses all these features. In this paper, we present a comprehensive description of NeVer2, illustrating its complete integration of design, training, and verification through examples. Additionally, we conduct experimental analyses on various verification benchmarks to illustrate the trade-off between completeness and computability using different algorithms. We also include a comparison with state-of-the-art tools such as $$\alpha $$ α ,$$\beta $$ β -CROWN and NNV for reference.