Increased cytokines and increased intercellular adhesion molecule-1 (ICAM1) found in the schizophrenia prefrontal cortex and in the blood may relate to cognitive deficits. Endothelial ICAM1 regulates immune cell trafficking into the brain by binding to integrins located on the surface of leukocytes. Whether the circulating levels of the main ICAM1 adhesion partners, lymphocyte-function associated antigen-1 (LFA1) and complement receptor 3 (CR3), both integrins, are altered in schizophrenia is unknown. Gene expressions of ICAM1, LFA1 and CR3 were measured in leukocytes from 86 schizophrenia patients and 77 controls. Participants were also administered cognitive testing to determine the extent to which cognitive ability was related to molecular measures of leukocyte adhesion. This cohort was previously stratified into inflammatory subgroups based on circulating cytokine mRNAs; thus, gene expressions were analysed by diagnosis and by inflammatory subgroups. Previously measured plasma ICAM1 protein was elevated in “high inflammation” schizophrenia compared to both “high” and “low inflammation” controls while ICAM1 mRNA was unchanged in leukocytes. LFA1 mRNA was decreased and CR3 mRNA was increased in leukocytes from people with schizophrenia compared to controls. LFA1 mRNA levels were positively correlated with working memory and elevated soluble ICAM1 was negatively correlated with verbal memory in schizophrenia. Altogether, some of the cognitive deficits in schizophrenia may be associated with altered expression of molecules that regulate immune cell trafficking.