Honeybee venom is one of the natural substances produced by bees (Apis mellifera). Their venom gland produces venom which plays a defensive role. In this study a concentration of macro and trace elements (Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Sb, Se, Sr, Pb and Zn) in foragers′ and honeybees′ venom was analysed by axial inductively coupled plasma optical emission spectrometry (ICP OES) with good validation parameters to differentiate the element accumulation ability in honeybee venom. Cumulative ability for some elements (As, Al, Ba, Cr, Li, Mo, Pb, and Zn) in bee venom was clearly demonstrated. Oppositely, levels of macro elements (Ca, K, Mg and Na) in venom were several times lower compared to the levels detected in foragers. Moreover, PCA analysis of bee samples showed that Cr was associated with locality Košice, and Cd with locality Krompachy; both have rich industrial history. Since some of analysed elements are potentially toxic for humans, a risk assessment for bee-stung scenario was also calculated. A new way of exposure to potentially toxic elements via honeybee stung was showed in this study. Non-carcinogenic risk assessment for humans to selected toxic elements (As, Cd, Cr, Ni, and Pb) demonstrated acceptable risk and moreover the same we may conclude for potential carcinogenic risk for beekeepers exposed to As, Cd, Ni, and Pb via venom over their whole life.