In the present paper we consider the full nonlocal thermodynamic equilibrium (non-LTE) radiation transfer problem. This formalism allows us to account for deviation from equilibrium distribution of both the radiation field and the massive particles. In the present study, two-level atoms with broadened upper level represent the massive particles. In the absence of velocity-changing collisions, we demonstrate the analytic equivalence of the full non-LTE source function with the corresponding standard non-LTE partial frequency redistribution (PFR) model. We present an iterative method based on operator splitting techniques that can be used to numerically solve the problem at hand. We benchmark it against the standard non-LTE transfer problem for a two-level atom with PFR. We illustrate the deviation of the velocity distribution function of excited atoms from the equilibrium distribution. We also discuss the dependence of the emission profile and the velocity distribution function on elastic collisions and velocity-changing collisions.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access