ABSTRACT In this study, we present a method for detecting and analysing the velocities of moving objects in Earth observation satellite images, specifically using data from Planet Labs’ push broom scanning satellites. By exploiting the sequential acquisition of multi-spectral images, we estimate the relative differences in acquisition times between spectral bands. This allows us to determine the velocities of moving objects, such as aircraft, even without precise timestamp information from the image archive. We validate our method by comparing the velocities of aircraft observed in satellite images with those reported by onboard ADS-B transponders and find an accuracy of ∼ 4 %. The results demonstrate the potential, despite challenges posed by the limitations of proprietary data, of a new application of commercial satellite data originally intended as an ongoing, once-daily survey of single images covering the entire land-area of the Earth. Our approach extends the applicability of satellite survey imagery for dynamic object tracking and contributes to the broader use of commercial satellite data in scientific research.
Read full abstract