The advent of connected vehicles holds significant promise for enhancing existing traffic signal and vehicle speed control methods. Despite this potential, there has been a lack of concerted efforts to address issues related to vehicle fuel consumption and emissions during travel across multiple intersections controlled by traffic signals. To bridge this gap, this research introduces a novel technique aimed at optimizing both traffic signals and vehicle speeds within transportation networks. This approach is designed to contribute to the improvement of transportation networks by simultaneously addressing issues related to fuel consumption and pollutant emissions. Simulation results vividly illustrate the pronounced the effectiveness of the proposed traffic signal and vehicle speed control methods of alleviating vehicle delay, reducing stops, lowering fuel consumption, and minimizing CO2 emissions. Notably, these benefits are particularly prominent in scenarios characterized by moderate traffic density, emphasizing the versatility and positive impact of the method across varied traffic conditions.