Diabetic foot ulcers (DFUs) are a severe microvascular complication. Platelet-rich plasma (PRP) pitches in DFU treatment. This study explored the mechanism of PRP facilitating wound repair in DFU mice via vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2)/extracellular signal-regulated kinase (ERK) pathway. The DFU mouse model was established, with wound skin injected with PRP, followed by the detections of wound area, histopathological changes, and CD31-positive cells. IL-6/TNF-α/VEGFA/VEGFR2/p-VEGFR2/(ERK1/2)/(p-ERK1/2) levels in wound tissue homogenates were assessed. VEGFA-VEGFR2 interaction was evaluated. PRP-treated DFU mice were simultaneously treated with fruquintinib/PD98059. PRP reduced wound area, IL-6 and TNF-α levels, elevated epidermal dermal thickness, CD31-positive cell number, and aligned tissue structure, which were mitigated by fruquintinib/PD98059. PRP promoted VEGFR2 phosphorylation. PRP and fruquintinib/PD98059 abated p-VEGFR2/VEGFR2 or p-ERK1/2/ERK1/2 levels in DFU mice. PRP activated the ERK pathway through VEGFA/VEGFR2. Collectively, PRP promoted VEGFR2 phosphorylation and activated the ERK pathway, thereby facilitating wound repair in DFU mice.
Read full abstract