The North China Plain (NCP) is one of the three great plains in China and also serves as a vital region for grain, cotton, and oil production. Under the influence of regional hydrothermal changes, groundwater overexploitation, and seawater intrusion, the vegetation coverage is undergoing continuous alterations. However, a comprehensive assessment of impacts of precipitation, temperature, and groundwater on vegetation in marine sedimentary regions of the NCP is lacking. Heilonggang Basin (HB) is located in the low-lying plain area in the east of NCP, which is part of the NCP. In this study, the HB was chosen as a typical area of interest. We collected a series of data, including the Normalized Difference Vegetation Index (NDVI), precipitation, temperature, groundwater depth, and Total Dissolved Solids (TDS) from 2001 to 2020. Then the spatiotemporal variation in vegetation was analyzed, and the underlying driving mechanisms of vegetation variation were explored in this paper. The results show that NDVI experiences a rapid increase from 2001 to 2004, followed by stable fluctuations from 2004 to 2020. The vegetation in the HB has achieved an overall improvement in the past two decades, with 76% showing improvement, mainly in the central and eastern areas, and 24% exhibiting deterioration in other areas. From 2001 to 2020, NDVI correlates positively with precipitation, whereas its relationship with temperature fluctuates between positive and negative, and is not statistically significant. There is a threshold for the synergistic change of NDVI and groundwater depth. When the groundwater depth is lower than 3.8 m, NDVI increases sharply with groundwater depth. However, beyond this threshold, NDVI tends to stabilize and fluctuate. In the eastern coastal areas, NDVI exhibits a strong positive correlation with groundwater depth, influenced by the surface soil TDS controlled by groundwater depth. In the central regions, a strong negative correlation is observed, where NDVI is primarily impacted by soil moisture under the control of groundwater. In the west and south, a strong positive correlation exists, with NDVI primarily influenced by the intensity of groundwater exploitation. Thus, precipitation and groundwater are the primary driving forces behind the spatiotemporal variability of vegetation in the HB, while in contrast, the influence of temperature is uncertain. This study has elucidated the mechanism of vegetation response, providing a theoretical basis for mitigating adverse factors affecting vegetation growth and formulating rational water usage regulations in the NCP.