The effective characterization of landscape water balance components—evapotranspiration, runoff, recharge, and soil storage—is critical for understanding the integrated effects of the water balance on vegetation dynamics, water availability, and associated environmental responses to climate change. An improved parameterization of these components can improve assessments of landscape stress and provide useful insights for predicting and managing vegetation responses to climate change. Hydrology models typically are not able to address water availability below the mapped soil profile, but we refined a landscape hydrology model, the Basin Characterization Model, by balancing measures of actual evapotranspiration (AET) with modeled subsurface soil water holding capacity, including bedrock storage. The purpose of this study was to characterize the effective rooting depth (the depth of soil and bedrock storage required to support AET) for 35 native vegetation types in California in order to quantify soil and bedrock water use, which ranged from 0 to 3.1 m for most vegetation types, exceeding mapped soil depths. This resulted in the quantification of bedrock water use, increasing available water 67% over that calculated by mapped soils alone. We found that mid-elevation vegetation types with lower water and energy limitations have the highest evapotranspiration rates and deepest effective rooting depth. We also evaluated the resilience to drought with this more spatially realistic characterization of water and vegetation interactions.
Read full abstract