Manually derived electrocardiographic (ECG) parameters were not associated with mortality in mechanically ventilated COVID-19 patients in earlier studies, while increased high-sensitivity cardiac troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were. To provide evidence for vectorcardiography (VCG) measures as potential cardiac monitoring tool, we investigated VCG trajectories during critical illness. All mechanically ventilated COVID-19 patients were included in the Maastricht Intensive Care Covid Cohort between March 2020 and October 2021. Serum hs-cTnT and NT-proBNP concentrations were measured daily. Conversion of daily 12-lead ECGs to VCGs by a MATLAB-based script provided QRS area, T area, maximal QRS amplitude, and QRS duration. Linear mixed-effect models investigated trajectories in serum and VCG markers over time between non-survivors and survivors, adjusted for confounders. In 322 patients, 5461 hs-cTnT, 5435 NT-proBNP concentrations and 3280 ECGs and VCGs were analyzed. Non-survivors had higher hs-cTnT concentrations at intubation and both hs-cTnT and NT-proBNP significantly increased compared with survivors. In non-survivors, the following VCG parameters decreased more when compared to survivors: QRS area (-0.27 (95% CI) (-0.37 to -0.16, p < .01) μVs per day), T area (-0.39 (-0.62 to -0.16, p < .01) μVs per day), and maximal QRS amplitude (-0.01 (-0.01 to -0.01, p < .01) mV per day). QRS duration did not differ. VCG-derived QRS area and T area decreased in non-survivors compared with survivors, suggesting that an increase in myocardial damage and tissue loss play a role in the course of critical illness and may drive mortality. These VCG markers may be used to monitor critically ill patients.
Read full abstract