In recent decades, information security has become increasingly valued, including many aspects of privacy protection, copyright protection, and digital forensics. Therefore, many data hiding schemes have been proposed and applied to various carriers such as text, images, audio, and videos. Vector Quantization (VQ) compression is a well-known method for compressing images. In previous research, most methods related to VQ compressed images have focused on hiding information in index tables, while only a few of the latest studies have explored embedding data in codebooks. We propose a data hiding scheme for VQ codebooks. With our approach, a sender XORs most of the pixel values in a codebook and then applies a threshold to control data embedding. The auxiliary information generated during this process is embedded alongside secret data in the index reordering phase. Upon receiving the stego codebook and the reordered index table, the recipient can extract the data and reconstruct the VQ-compressed image using the reverse process. Experimental results demonstrate that our scheme significantly improves embedding capacity compared to the most recent codebook-based methods. Specifically, we observe an improvement rate of 223.66% in a small codebook of size 64 and an improvement rate of 85.19% in a codebook of size 1024.